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ions. Therefore, such calculations do not stringently test the various bare potentials and 
dielectric functions which have been obtained. In AI and Pb, however, conduction electron 
screening is much greater (on average, the actual phonon frequencies at the zone boundary 
are about 35% of the unscreened ionic lattice frequencies in AI, compared with 80% in 
Na), and the tests of modifications of the potentials are correspondingly more sensitive. 

In most of this work we have used a local Heine-Abarenkov (1964, to be referred to as 
HA) model potential. Before dielectric screening this potential consists of a series of square 
wells' of depth A, for each angular momentum I, inside a radius RM> and a Coulomb poten­
tial -Zlr outside this radius. The values of A,(E) at several values of energy E are obtained 
from spectroscopic data for the free atom and then extrapolated to the energy of the solid 
(which involves RM)' They set A, = A2 for I > 2. Shaw (1968) modified this by using a model 
potential only for those values of I for which there is an ionic core state, and by allowing 
RM to vary with I and with energy. The potential was then variationally optimized according 
to the prescription of Cohen and Heine (1961). The full non-locality and energy dependence 
of the potential were included at all stages. 

Using the local HA potentia~ we have calculated the dispersion curves for Na, AI and 
Pb, at variable volume, for a number of dielectric functions. These are discussed and com­
pared with experimental zero pressure dispersion curves and pressure derivatives of the 
elastic constants in § 3. Where possible we have also performed calculations with Shaw's 
potential and with the 'semi-nonlocal't version of the HA potential calculated by Animalu 
(1966). This gives an estimate of the differences in the bare model potentials. Shaw and 
Pynn (1969) have investigated the effects ofthe non-locality of the potential, and of exchange 
and correlation corrections to the dielectric function, on calculated phonon frequencies in 
hexagonal close-packed Mg. Our calculations for these cubic metals therefore supple­
ment theirs, although we have studied the dielectric function more extensively. We have also 
estimated the effective:; mass corrections (Shaw 1969 b) to the dispersion curves in AI. 

In §4 we have tested our calculated pressure derivatives of the maximum phonon 
frequencies by calculating the pressure derivatives of the superconducting transition tem­
peratures of AI and Pb using Hodder's (1969) technique. . 

We conclude, in § 5, that, when screened by a suitable dielectric function, the local HA 
potential is quite reliable in predicting these properties of simple metals, while the Shaw 
potential is even better where we have used it at zero pressure. 

2. Theory and calculation details 
In the harmonic approximation, the phonon frequencies W2(q, Jl.) where q is the phonon 

wave vector and Jl. the polarization index, are the eigenvalues of the dynamical matrix 
DaIl(q). Along the principal directions of a cubic crystal they are given simply by 

w2(q, Jl.) = w;(q, Jl.) + ~(q, Jl.) - ~(q, Jl.). 

The w~(q, Jl.) arise from the direct Coulomb interaction between the (point) ions, and are 
treated by Ewald's method (Sham 1965). The contribution from the exchange overlap 
between cores, ~(q, Jl.), is negligible in Na (Vosko 1964) and is expected to be small in 
Al and Pb also. It may be treated in the Born-Mayer approximation (Sham 1965) when 
necessary. The final term, w~(q, Jl.), arises from the screening of the ions' vibration by the 
conduction electrons and is given by (Vosko et al. 1965) 

w~(q, Jl.) = ~ L ~q + :~ F(I q + HI) - w~ L ~ F(IHI) (1) 
H q + Hc#Orr 

where the sums are over all reciprocal lattice vectors H of the crystal lattice, and Wp is the 
plasma frequency. The dependence upon the electron-ion potential is contained in this 
term 

t This includes some features of the non-local potential, but omits others; see Shaw (1969a). 
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The energy- wavenumber characteristic F(q) is given, to second order in the HA model 
potential and in the 'semi-non-local' approximation, by (Animalu 1966).t 

() = {4nZ(1 + Clecr)}-2 () ()£(q) -1 
F q Oq2 V q Ub q 1 - f(q) (2) 

where n is the atomic volume and Z the ionic charge. In the local approximation, the screened 
model potential v(q) = Ub(q)/£(q), where the bare potential ub(q) is given by Animalu and 
Heine (1965) and the dielectric function is 

A. { 1 - y2 \1 + Y \ } £(q) = 1 + {I - f(q)}(1 + Cleff) 2y2 1 + ~ In 1 _ y (3) 

where y = q/2kF, A. = (nkF) -1 and (1 + Cleff) is the orthogonalization hole correction factor 
introduced by Animalu and Heine (1965). In the theories of both Animalu et al. (1966) and 
Shaw (1969 a) a factor such as this appears in F(q) and in the plasma frequency because the 
ions are treated as having charge Z(1 + Cleff). It appears in £(q) only when used with HA 
potentials, having been introduced by them to correct for an approximation in their 
treatment of the bare potential. 

The function f(q) corrects for exchange and correlation effects among the conduction 
electrons. In the Hartree approximation f(q) = O. From an approximate evaluation of 
higher order graphs, Hubbard (Falicov and Heine 1961) suggested that this correction 
could be approximated by 

(4) 

with 

(5) 

More recently, Geldart and Vosko (1965) chose p to satisfy a fundamental relation between 
the compressibility of an interacting electron gas and its dielectric function for q .... O. 
Ashcroft (1968) and Shaw and Pynn (1969) have obtained a slightly different value of p 
in a similar calculation based on the Nozieres-Pines (1958) interpolation formula for the 
energy of an interacting electron gas: 

(6) 

Using the higher-order corrections to the exchange and correlation energies obtained by 
Ma and Brueckner (1968), Shaw found that an even better approximation for q .... 0 was 
given by 

1 { 2 } 4y 2 (4cxkF 2) fs(q) = ~ 1 - exp( - 2y) + kF Y exp - -y-y (7) 

with Cl = 0·0538 and 'Y = 0·0122. Each of (4) and (7) have also been designed so that 
{1 - f(q)} --+ t as q .... 00, implying that exchange corrections halve the effective interaction 
between electrons in this limit. However, Kleinman (1967, 1968) has argued that in fact 
f(q) = O(q2) for q .... 00, in agreement with the correction factor he obtained from both 
self-consistent field and diagrammatic techniques: 

1 (y2 y2) 
fK(q) = 4' y2 + P + 7f . (8) 

Even more recent work by Langreth (1969) has confirmed this form for large q, but detailed 
calculations by Geldart and Taylor (1970 a, b) do not, so the subject is still open. In each 
case, the form of f(q) has simply been chosen to interpolate smoothly between the determined 

t We use atomic units throughout. 


